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The General Gauss Principle
of Least Constraint
This paper develops a general form of Gauss’s Principle of Least Constraint, which deals
with the manner in which Nature appears to orchestrate the motion of constrained mechan-
ical systems. The theory of constrained motion has been at the heart of classical mechanics
since the days of Lagrange, and it is used in various areas of science and engineering like
analytical dynamics, quantum mechanics, statistical physics, and nonequilibrium thermody-
namics. The new principle permits the constraints on any mechanical system to be incon-
sistent and shows that Nature handles these inconsistent constraints in the least squares
sense. This broadening of Gauss’s original principle leads to two forms of the General
Gauss Principle obtained in this paper. They explain why the motion that Nature generates
is robust with respect to inaccuracies with which constraints are often specified in modeling
naturally occurring and engineered systems since their specification in dynamical systems
are often only approximate, and many physical systems may not exactly satisfy them at every
instant of time. An important byproduct of the new principle is a refinement of the notion of
what constitutes a virtual displacement, a foundational concept in all classical mechanics.
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1 Introduction
The problem of finding the acceleration of a constrained mechan-

ical system, given the acceleration of the unconstrained system and
the constraints acting on it, is one of the central problems in
mechanics. It was first broached systematically by Lagrange some
225 years ago [1] and has been worked on continuously by mathe-
maticians, physicists, and engineers, to the present day. Lagrange’s
development of generalized coordinates was in part a direct conse-
quence of his attempt to handle holonomically constrained systems
by permitting the generalized coordinates to be the constraints
themselves. He developed and refined the idea of using the so-called
Lagrange multipliers (first devised by Euler to study maxima and
minima of functions) to obtain the equations of constrained
motion. In the years that followed, the Lagrange multiplier
approach became the preeminent way of determining the behavior
of constrained mechanical systems [2–5]. However, the determina-
tion of Lagrange multipliers is problem-specific; they cannot be
obtained in closed form in a general setting, and for large-scale
problems involving hundreds or thousands of degrees of freedom,
and numerous constraints, both holonomic and nonholonomic, the
approach usually becomes unfeasible.
Among his other interests, Dirac spent a considerable amount of

time exploring the development of the equations of motion of con-
strained systems in classical mechanics in order to use these devel-
opments later on in quantum mechanics [6,7]. He employs the
Hamiltonian formulation of classical mechanics because of its

easy extension to quantum mechanics and uses Poisson brackets
to write the equations of motion. He too uses the ubiquitous
Lagrange multiplier approach. He takes the given constraints,
called “primary constraints,” to be functions of the generalized
coordinates and the corresponding momenta with no explicit depen-
dence on time. These primary constraints are used in an iterative
approach to generate sets of “secondary constraints,” which are
later treated for many purposes just like the primary constraints.
The iterative approach finally leads to a set of linear equations
from which the Lagrange multipliers are finally obtained. While
the method provides a useful approach for singular Lagrangians,
at each iterative step the scheme generates secondary constraints
that are problem specific. Though a general procedure, it does not
therefore result in a straightforward equation that explicitly provides
the acceleration of a constrained system that may be subjected to
general holonomic and/or nonholonomic constraints, which may
or may not explicitly depend on time.
In 1829, Gauss published a remarkable three-page paper entitled,

“On a Universal Principle of Mechanics,” in which he explained a
deep new principle that appears to be at the root of how Nature exe-
cutes the motion of constrained mechanical systems [8]. He showed
in a simple and elegant manner that when a mechanical system is
constrained, Nature acts like a mathematician. It picks at each
instant of time, from among all the possible accelerations that
satisfy the constraints that particular acceleration for the constrained
system that minimizes, in a weighted least squares sense, the differ-
ence between the acceleration of the unconstrained and the con-
strained system. A possible acceleration is any acceleration that
(exactly) satisfies the constraints. Today, this principle is what is
called “Gauss’s Principle of Least Constraint.” This paper aims to
provide a significant and useful extension of this principle, which
was originally proposed by Gauss.
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More specifically, consider an unconstrained mechanical system
described by

M(q, t)a(t) = Q(q, q̇, t), q(0) = q0, q̇(0) = q̇0 (1)

where M is an n-by-n positive definite matrix, Q is the known
n-vector (n by 1 vector) of what is called the “given” or “impressed
force,” a is the n-vector of acceleration at time t, and q and q̇ are the
generalized position and generalized velocity of the system. By
unconstrained we mean that the components of the n-vectors q0
and q̇0 can be arbitrarily chosen. Both the matrix M(q, t) and the
n-vector Q(q, q̇, t) are assumed to be known functions of q, q̇,
and t, so that the acceleration a(t) of the unconstrained system is
known to be simply M(q, t)−1Q(q, q̇, t).
Assume now that this system is subjected to a given set of m

smooth (C1) constraints described by

φi(q, q̇, t) = 0, i = 1, 2, . . . , m (2)

where φi are known functions of q, q̇, and t. We note that Eq. (2)
includes both holonomic and nonholonomic constraints.
The quintessential problem is mechanics, which is referred to in

the first line of this paper and can then be succinctly stated as: What
is the acceleration q̈ of the constrained system?
In other words, how does one find the acceleration q̈(t) of the con-

strained system, which Nature provides, and is now described by
the equation

M(q, t)q̈(t) = Q(q, q̇, t) + QC(q, q̇, t), q(0) = q0, q̇(0) = q̇0 (3)

in which the n-vector QC(q, q̇, t), called the force of constraint, is
engendered by the presence of the constraints described in Eq. (2).
One immediately notices that in the presence of constraints the

initial conditions in Eq. (3) can no longer be chosen arbitrarily as
they were in Eq. (1), because the components of each of the
n-vectors q0 and q̇0 in Eq. (3) now need to satisfy the m constraints
φi(q, q̇, t) = 0 at time t= 0. Equation (2) can be rewritten upon
appropriate differentiation with respect to time as

A(q, q̇, t)q̈ = b(q, q̇, t) (4)

where them-by-nmatrix A(q, q̇, t), which we will call the constraint
matrix, has rank r> 0. Each constraint provides one row of the equa-
tion set (4). When the rank of A(q, q̇, t) is r, we shall say in this
paper that there are r constraints φki , i = 1, . . . , r among the m
that are independent; when A(q, q̇, t) has full row rank m, we
shall refer to the constraints as being independent. It is clear that
the consistency condition imposed by Eq. (4) may not be satisfied
by a physical system at each instant of time, since it is only an
approximation of the physical situation as modeled by the investi-
gator. One of the aims of this paper is to permit these prescribed
equations of constraint to be only approximately satisfied by the
actual system, even allowing for the possibility of the prescribed
constraints being inconsistent, as could possibly happen when
these constraints are obtained from measurements carried out
from physical experiments. Thus, situations in which the prescribed
constraints are improperly and/or inaccurately supplied are
included.
Equation (3) shows that at each instant of time t, we have two

unknown n-vectors—q̈ and QC—and therefore a total of 2n
unknowns that need to be found. However, we have only the n
equations given in Eq. (3) and m equations in Eq. (2) (or in
Eq. (4)), a total of (n+m) equations at hand, of which (n+ r) are
independent. To determine the 2n unknowns, we need 2n−
(n + r)= n− r additional independent relations, and this is where
the main problem of understanding the way in which Nature
orchestrates constrained motion resides.
The general approach for obtaining these additional equations

was provided by considering an assumption first introduced by
d’Alembert [9] and later described with precision by Lagrange
[1]. It invokes two fundamental notions called virtual displacements
and virtual work that are at the bedrock of mechanics. A virtual

displacement is defined as any nonzero n-vector v(t) that satisfies
the relation

A(q, q̇, t)v(t) = 0 (5)

Thus, a virtual displacement vector v at time t belongs to the null
space of the matrix A(q, q̇, t). This notion of a virtual displacement
was initially applied to nonholonomic constraints that had the
so-called Pfaffian form in which the generalized velocities appear
only linearly [3–5]. Equation (5) shown here uses the expanded
notion of virtual displacements developed more recently for
general nonholonomic constraints in which the generalized veloci-
ties (see Eq. (2)) can appear nonlinearly [10].
Lagrange’s assumption (called d’Alembert’s Principle) pre-

scribes that the force of constraint QC(q, q̇, t) does no work under
any(every) virtual displacement, i.e., that

vT (t)QC(q, q̇, t) = 0 (6)

In this paper, we will include an extension of d’Alembert’s Prin-
ciple and consider situations in which the right-hand side of Eq. (6)
is not zero, but is prescribed by a known n-vector C(q, q̇, t) for a
given specific constrained system so that

vT (t)QC(q, q̇, t) = vT (t)C(q, q̇, t) (7)

As before, by “known,” we mean a known function of q, q̇ and t.
The force n-vector C, could for example, represent the force of fric-
tion on a surface. The right-hand side of Eq. (7) can be chosen to be
positive, zero, or negative, to account for forces that do do work on
the system in a virtual displacement. Thus, energy can be added
and/or extracted through the constraints as in, for example, model-
ing friction provided by a constraining surface. When C≡ 0, Eqs.
(6) and (7) become identical and we obtain d’Alembert’s Principle
(assumption). In the interest of brevity, from here on, we will drop
the arguments of the various entities mentioned earlier, except when
necessary for clarity.
In contrast to d’Alembert’s Principle (Eq. (6)), Gauss’s Principle

of Least Constraint, which chronologically came about 40 years
after Lagrange’s book [1], provides a different approach to under-
standing the manner in which Nature picks the acceleration q̈ of a
constrained system at every instant of time t. It does not use
notions like virtual displacement and virtual work. It states that at
each instant of time, the acceleration of the constrained system q̈
is obtained so that [8]

q̈ =min ‖(z̈ − a)‖2M :=min [(z̈ − a)TM(z̈ − a)],

from among all possible acceleration n−vectors
z̈ that (exactly) satisfy the constraint equationAz̈ = b (8)

The subscript on the square of the Euclidean norm refers to the
positive definite mass matrix M in Eq. (1) that weights the norm.
We shall refer from here on to ‖(z̈ − a)‖2M as the Gaussian, G(t).
Gauss’s principle thus says that at each instant of time Nature: (1)

first, obtains the set, Z, of all the possible accelerations z̈ that satisfy
the (consistent) constraints, i.e., that exactly satisfy the consistent
equation Az̈ = b, (2) and then picks from this set, Z, of possible
accelerations the one acceleration vector, q̈, that minimizes
G = ‖(z̈ − a)‖2M . Nature, according to Gauss, behaves like a mathe-
matician and resorts to a weighted least squares solution to get q̈ at
each instant of time. Gauss assumed that the mass matrix M is pos-
itive definite, which is what is assumed in this paper too [3,8].
Gauss’s approach to understanding constrained motion is mark-

edly different from that of d’Alembert’s. Specifically, it is totally
innocent of notions like virtual displacements and Lagrange multi-
pliers. It is this radically different view of Gauss regarding the way
Nature operates that permits the development in classical mechanics
of a single explicit equation of motion for constrained mechanical
systems subjected to holonomic and/or nonholonomic constraints,
in which time may or may not be explicitly involved [11]. It is
also noteworthy that unlike most other so-called “minimum-
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principles,” Gauss’s Principle is perhaps the only fundamental prin-
ciple in classical mechanics in which the minimum is a unique
global minimum. Thus, though complementary to one another in
the sense that they each, of course, lead to the same acceleration
of the constrained mechanical system at each instant of time,
Gauss’s Principle and d’Alembert’s Principle (Eqs. (6) and (8))
are conceptually quite different from one another.
In this paper, we provide a more general form of Gauss’s princi-

ple wherein we

(1) include the extended form of the d’Alembert Principle, in
which we consider systems in which Eq. (7) rather than
Eq. (6) is valid; that is, we assume that the total work done
by the constraint forces is positive, negative, or zero, under
virtual displacements [12]; and

(2) simultaneously relax the condition in Eq. (8) by requiring
that all the possible acceleration n-vectors z̈ eligible in the
minimization of G(t) belong to the set Zg of n-vectors
that satisfy the constraint equation Az̈ ≃ b, in which the
sign ′ ≃ ′ is understood to mean throughout this paper “in
the least squares sense.” This extension has the important
consequence of allowing the constraints to be inconsistent,
often a result of (a) experimental measurement errors when
describing the constraints placed on complex mechanical
systems that could bring about errors in the prescription of
the m-vector b in Eq. (4), and (b) numerical errors brought
about during computational procedures.

We note that the prescribed constraint equation Aẍ = b, which
must be satisfied at every instant of time in the evolving motion
of a constrained system, is at best an approximate description of
the physically occurring constraints in a mechanical system and is
unlikely to be exactly satisfied in a mathematical sense by any
actual system. The actual physical constraints acting on a system
may be better modelled by the equation Aẍ = b + ε(q(t), q̇(t), t),
where the n-vector ε(t) denotes errors (modeling and/or computa-
tional) in the specification of the constraints. The question then
arises: what is the extent to which the form of the equation of
motion (orchestrated by Nature) is sensitive to the accuracy with
which the constraints are specified? In what follows we show that
Nature does not necessarily appear to look for the exact satisfaction
of all the constraints when devising the motion of constrained
systems but only considers their satisfaction in the least squares
sense. For example, for a wheel rolling down a flat surface, the spec-
ified constraint that the surface is “flat” only approximates the actual
physical constraint, since at each instant of time along the wheel’s
path there may be small surface undulations which are not specified
in the prescribed constraint equation. Another way of stating this
question is: why is Nature robust (forgiving) in its response with
respect to miss-statements in the specification of the constraints
that may be prevalent at every instant of time throughout the dura-
tion of motion of a constrained mechanical system? This question is
answered by the General Gauss Principle obtained herein that
Nature seems to abide by.

2 The General Gauss Principle of Least Constraint
As seen earlier, the dynamical system is specified by the mass

matrix M(q, t), the constraint matrix A(q, q̇, t), and the vectors
Q(q, q̇, t), C(q, q̇, t), and b(q, q̇, t); these quantities are assumed
to be known functions of the q’s, q̇’s, and t. M is an n-by-n positive
definite matrix, A is the m-by-nmatrix, Q and C are n-vectors, and b
is an m-vector. The n-vector a:=M−1Q. In what follows, the con-
strained system shall refer to the system described in the previous
section using these entities.
Consider the set of n-vectors Zg = {z̈:Az̈ ≃ b}, where z̈ is the least

squares solution of the equation Az̈ ≃ b. Our aim is to show that the
equation of motion of the constrained system obtained by doing the
minimization of Gg (described below in Eq. (10)) when using
n-vectors from the set Z described earlier has a form identical to

that obtained by using n-vectors from the set Zg. We shall therefore
assume in what follows that the specified constraint equation
Aq̈ ≃ b may or may not be consistent. In contrast to the set Zg,
recall that the n-vectors z̈ that belong to the set Z (used in Gauss’s
original principle) are required to exactly satisfy the consistent con-
straint equation Az̈ = b, i. e, Z = {z̈:Az̈ = b}.
We begin by stating the new principle, which we refer to as the

First Form of the General Gauss Principle of Least Constraint. In
what follows, we use the notation established in Sec. 1.

First Form of the General Gauss Principle of Least
Constraint. At each instant of time t, Nature picks the unique
acceleration q̈(t) of a constrained mechanical system such that

q̈ =min ‖z̈ −M−1(Q + C)‖2M from among all acceleration

n-vectors z̈ for which ‖(Az̈ − b)‖2 is aminimum.
The minimumattained at q̈, is a global minimum. (9)

At every instant of time, we define the generalized Gaussian (with
subscript g for generalized) as

Gg := ‖z̈ −M−1(Q + C)‖2M (10)

Comparison withG given in statement (8) shows thatGg contains
the vector C, so the force of constraint QC can do positive, negative,
or zero, work in a virtual displacement, when viewed from the view-
point of d’Alembert’s Principle (see Eq. (7)) [12,13]. More impor-
tantly, in statement (9), the n-vectors z̈ used in the minimization of
Gg belong to the set Zg and not to the set Z; that is, we permit incon-
sistent constraints at each instant of time, which take the form

Aq̈ − b = ε(t) ≠ 0, or Aq̈ ≃ b (11)

where b may not be in the range space of A, thereby allowing for
errors in the specification/prescription of the constraints, which
may arise either from computational procedures and/or from inaccu-
rate descriptions of one or more of the physically extant constraints.
Our discussion below shows that it appears to be helpful in ana-

lytical dynamics to expand the notion of a possible acceleration
vector. We define, in our expanded view, a possible acceleration
at any given instant of time t, as any acceleration n-vector, z̈,
which satisfies the constraint equation Az̈ ≃ b imposed on the
system in the least squares sense, at that instant of time. We thus
define the set Zg that contains all such possible acceleration
vectors, at a given instant of time, by

Zg(t) = {z̈(t):ε(t)Tε(t) = (Az̈ − b)T (Az̈ − b) is aminimum} (12)

The First Form of the General Gauss Principle of Least Con-
straint then says that at each instant of time Nature picks out from
the set, Zg, the one unique vector, z̈∗, that minimizes the Gaussian
Gg, and it thereby obtains the acceleration of the constrained
mechanical system, q̈ := z̈∗, at that instant of time. (That the
vector z̈∗ is unique, will be shown below.) This can be then stated as

q̈(t) := z̈∗(t) = min
∀z̈∈Zg(t)

[Gg(t)] = min
∀z̈∈Zg

‖z̈ −M−1(Q + C)‖2M
[ ]

(13)

Our approach to establish this result is to find q̈ explicitly using
Eq. (13) and show that it results in an equation that has exactly
the same form as the equation of motion obtained by using the
n-vectors z̈ that belong to the set Z to minimize Gg, which is
known to be [13,14]

q̈ = a +M−1/2B+(b − Aa) +M−1/2(I − B+B)M−1/2C (14)

where the m-by-n matrix B:=AM−1/2, X+ is the Moore–Penrose
(MP) inverse [15–17] of the matrix X, and a:=M−1Q. We will
refer to Eq. (14) as the fundamental equation of constrained
motion (FEMC).
Equation (14) not only describes the manner in which Nature

orchestrates constrained motion of mechanical systems, but also
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opens up new ways of performing exact control of mechanical
systems and has been widely used in aerospace, civil, and mechan-
ical engineering; in robotics and control designs for nonlinear
systems like unmanned aerial vehicles, and in the area of local
and decentralized control of dynamical systems.
We begin by considering the following slightly more general

result, which will lead us later on to a Second Form of the
General Gauss Principle of Least Constraint.

Result 1. At each instant of time t, the unique acceleration n-vector
q̈ =min [Gg] =min ‖z̈ −M−1(Q + C)‖2M from among all n-vectors
z̈ for which ‖(Az̈ − b)‖2W := (Az̈ − b)TW(Az̈ − b) is a minimum, is
given by

q̈ = a +M−1/2P+(b̃ − PM−1/2Q) +M−1/2(I − P+P)M−1/2C (15)

where the m-by-n matrix P=W1/2B=W1/2AM−1/2, b̃ =W1/2b, a=
M−1Q, and the m-by-m matrix W> 0. The acceleration n-vector q̈
provides the global minimum of Gg. ▪

Remark 1. Result 1 above differs from the statement of the First
Form of the General Gauss Principle in Eq. (13) in that it replaces
the set of candidate n-vectors z̈ ∈ Zg (see Eq. (12)) that are to be
used in the minimization of Gg by the set

ZW (t) = {z̈(t):ε(t)TWε(t) = (Az̈ − b)TW(Az̈ − b) is aminimum}

(16)

where the weighting matrix W> 0.
Obviously, when W= Im, the sets Zg and ZW become identical,

and we recover from Result 1 (see Eq. (15)) the First Form of the
General Gauss Principle of Least Constraint, since P=B=AM−1/2,
b̃ = b, and so Eq. (14) becomes identical to Eq. (15). ▪

We provide two different proofs for Result 1, since each provides
different insights into the manner in which Eq. (15) results. The first
shows explicitly the various quantities of interest from an engineer-
ing standpoint. The second is algebraic, and it provides the
requisite result in a succinct manner, but it does not lend itself to
deeper physical insights.

Proof 1. We divide the proof of Eq. (15) into two parts: the first
deals with the minimization of ‖Az̈ − b‖2W , and the second deals
with the minimization of the Gaussian Gg. ▪
Part 1 of Proof 1. We start by considering the well-known least
squares solution (LSS), z̈, of the possibly inconsistent equation
Az̈ ≃ b, in which one finds

min ‖Az̈ − b‖2W =min ‖W1/2(Az̈ − b)‖2
over all n−vectors z̈ belonging toℜn (17)

While this is a well-studied problem (e.g., see Refs. [16] and [17]),
we will consider some important aspects of the LSS solution that
will be useful to us later on. Several remarks are provided along
the way that give immediate insights into the equations obtained
at various stages.
We begin by noting that

‖Az̈ − b‖2W = ‖W1/2(Az̈ − b)‖2 = ‖(W1/2 AM−1/2
︸���︷︷���︸

B

M1/2z̈︸�︷︷�︸
z̈s

−W1/2b)‖2

= ‖Pz̈s − b̃‖2 (18)

where the m-by-n matrix P=W1/2B=W1/2AM−1/2, z̈s =M1/2 z̈, and
b̃ =W1/2b. Hence, the minimization problem in Eq. (17) can be
alternatively solved by finding the least squares solution, z̈s, to
Pz̈s ≃ b̃, and then setting z̈ =M−1/2z̈s. Since z̈ can be (uniquely)
obtained from knowledge of z̈s (since M is known), it is useful to
think of the acceleration n-vector z̈s as a transformed (scaled)
version of z̈. In what follows, we shall be dealing primarily with z̈s.▪

The determination of the least squares solution (LSS), which
minimizes ‖Pz̈s − b̃‖, leads to the well-known consistent so-called
normal equation, given by

PTPz̈s = PTb̃ (19)

whose solution can be explicitly obtained as [16]

z̈s = (PTP)+PTb̃ + [In − (PTP)+PTP]h (20)

where h is an arbitrary n-vector, and P+ is the Moore–Penrose (MP)
inverse of P. Noting that (PTP)+ PT=P+ [15], Eq. (20) simplifies to

z̈s = P+b̃ + (In − P+P)h, where h is arbitrary (21)

The first component, P+b̃, of the n-vector z̈s shown on the right-
hand side belongs to Range(PT) (Range stands for range space) and
is uniquely defined since the MP inverse of a matrix is unique, while
the second component, (In−P+ P)h, belongs to Null(P) (Null stands
for null space) and is arbitrary, since h is arbitrary. These two com-
ponents are orthogonal to one another as seen from (I−P+ P)TP+=
(I−P+ P)P+= 0, and the two subspaces are orthogonal comple-
ments of one another.
Having found z̈s, the acceleration n-vector z̈ that solves the equa-

tion Az̈ ≃ b (in the least squares sense) is then explicitly given by

z̈ =M−1/2 z̈s =M−1/2[P+b̃ + (I − P+P)h] (22)

and the set ZW of all n-vectors that solve Az̈ ≃ b (with the weighting
matrix W ) is given by

ZW = {z̈ =M−1/2[P+b̃ + (I − P+P)h︸���������︷︷���������︸
z̈s

]:h is an arbitrary n−vector}

(23)

Note that elements of the set ZW differ from one another solely
because of the arbitrary component, (I−P+ P)h, of z̈s that
belongs to null(P).

Remark 2. The normal equation PTPz̈s = PTb̃ has a unique solution
if and only if the n-by-nmatrix PTP is invertible, i.e., n= rank(PTP)
= rank(P). Hence, a unique solution of this normal equation results
if and only if the m-by-n matrix P has full column rank n. Further-
more, when PTP is invertible, then P+= (PTP)+ PT= (PTP)−1PT so
that P+ P= In. Thus, we have shown that when P has full column
rank, P+ P= In; the converse is also easy to show. Hence, from
Eq. (23), we see that the set ZW is comprised of just a single
element, z̈ =M−1/2P+b̃, if and only if P+ P= In. ▪

Remark 3. Since P=W1/2AM−1/2 and M, W> 0, then rank(P)=
rank(A) and therefore rank(PTP)= rank(ATA). In that case, as
shown in Remark 2, P+ P=A+ A= In if and only if rank(P)=
rank(A)= n, that is, the constraint matrix A has full column rank.▪

Remark 4. For each different value of the arbitrary n-vector h, Eq.
(22) gives an LSS to the problem of minimizing ‖Az̈ − b‖2W , yet for
each of these different solutions, z̈, the minimal value of ‖Az − b‖2W
is independent of h and equals ‖(PP+−I)b̃‖2. To show this, we
simply substitute for z̈ from Eq. (22) in ‖Az̈ − b‖2W . Thus

‖Az̈ − b‖2W = ‖Pz̈s − b̃‖2 = ‖P[P+b̃ + (In − P+P)h] − b̃‖2

= ‖(PP+−Im)b̃‖2 := ‖δ‖2 (24)

We see that every element of the set ZW in Eq. (23) attains the
same minimal value of ‖Az − b‖W defined earlier as ‖δ‖. ▪

Remark 5. If the constraints were consistent and Aq̈ = b (i.e., b
belongs to the range space of A) that would mean that
W1/2AM−1/2
︸������︷︷������︸

P

M1/2q̈ =W1/2b, which is just Pq̈s = b̃, where

q̈s :=M1/2q̈. The necessary and sufficient condition for the equation

111006-4 / Vol. 90, NOVEMBER 2023 Transactions of the ASME



Pq̈s = b̃ to be consistent is known to be (PP+−Im)b̃ = 0 [15]. Hence,
a measure of the extent to which the equation Pq̈s = b̃ is inconsistent
is the m-vector δ := (PP+−Im)b̃, whose norm is the minimum value
of ‖Az̈ − b‖W that is attained, as seen in Eq. (24). Thus, the norm of
the error

							
εTWε

√
for each acceleration n-vector z̈ that minimizes

‖Az̈ − b‖2W is the norm of the extent of the inconsistency, δ, in the
constraint equation Pq̈s ≃ b̃. ▪

Remark 6. The above discussion underlines the importance of
viewing the constraints imposed on a mechanical system as limiting
at each instant of time the acceleration n-vectors that the system can
have to only those that satisfy the equation Az̈ ≃ b. It should be
noted that this equation in linear in the n-vectors of accelerations,
z̈, that the constrained system can access, no matter the nonlinear
nature of the constraints in Eq. (2), which are, in general, functions
of the n-vectors q, q̇, and of t. Our notion of consistency of the
imposed constraints is then the easy conformity with that of the con-
sistency of a linear set of equations. Similarly, we will see below
that when the constraints are functionally independent the rank of
the m-by-n matrix A is m. ▪

Part 2 of Proof 1. Having obtained the set ZW of vectors that min-
imize ‖Az̈ − b‖2W , we now go on to choose from this set containing
the n-vectors z̈ =M−1/2 z̈s—which, as seen earlier, differ from one
another in the component of z̈s which belongs only to Null(P)—
the one (unique) component in this Null(P) that minimizes the
Gaussian Gg. ▪

Remark 7. We note that if the set ZW of vectors that minimize
‖Az̈ − b‖2W is limited and contains just one (a single) n-vector,

then finding a vector that minimizes the Gaussian Gg from among
all the vectors in the set ZW becomes trivial, since the set ZW now
contains only one element in it! One could indeed exclude this
trivial case from consideration when dealing with the minimization
of the Gaussian Gg over the set of n-vectors, z̈, belonging to ZW.
This case arises if and only if the rank(P)= n, making P+P= I so
that z̈s = P+b̃ (see Eq. (21)) and q̈ = z̈∗=M−1/2 z̈s =M−12P+b̃
(see Remark 2). Furthermore, P+P= I implies that rank(P)= n.
Thus, when P+P= I, the Gaussian has the value
Gg = ‖P+b̃ −M−1(Q + C)‖2, and the acceleration of the con-
strained system is then given by q̈ =M−12P+W1/2b. ▪

Having taken care of the trivial case in which the set ZW is made
up of a singleton, we now consider the minimization ofGg when the
set ZW contains more than one n-vector in it. Rewriting the
Gaussian as

Gg(z̈)=‖z̈−M−1(Q+C)‖2M = [z̈−M−1(Q+C)]TM[z̈−M−1(Q+C)]

= [M1/2 z̈−M−1/2(Q+C)]T [M1/2z̈−M−1/2(Q+C)]

= [z̈s−M−1/2(Q+C)]T [z̈s−M−1/2(Q+C)]

=‖z̈s−M−1/2(Q+C)‖2 (25)

we see that we need to solve a second least squares problem to find
that specific acceleration n-vector z̈s that minimizes this Gg from
among all the n-vectors that are given in Eq. (21). Furthermore,
Eq. (25) shows that Gg(z̈) is if fact a function of z̈s and can as
well be denoted, using its last line, by Gg(z̈s).
Using Eq. (21) in the last line of Eq. (25), we get

Gg(z̈) = [P+b̃ + (I − P+P)h −M−1/2(Q + C)]T [P+b̃ + (I − P+P)h −M−1/2(Q + C)],

= [P+b̃ + (I − P+P)h]T [P+b̃ + (I − P+P)h] − 2[M−1/2(Q + C)]T (I − P+P)h + · · ·
= [hT (I − P+P)(I − P+P)h] − 2[M−1/2(Q + C)]T (I − P+P)h + · · ·
= [hT (I − P+P)h] − 2[M−1/2(Q + C)]T (I − P+P)h + · · · (26)

In the equalities above, the three dots at the end refer to terms that
do not contain h. In the third equality, we have used the fact that
the vectors (I−P+P)h and P+b̃ are orthogonal because
hT (I − P+P)TP+b̃ = hT (I − P+P)P+b̃ = 0; in the last equality, the
fact that the matrix I−P+P is idempotent.
Our aim then is to minimize this quadratic form Gg over all

n-vectors h. Noting that I−P+P is symmetric, differentiating the
last line in Eq. (26) with respect to h, and setting it to zero, we
then get

(I − P+P)h = (I − P+P)M−1/2(Q + C) (27)

Thus, we have found the component of z̈s in the null space of P
which will make Gg a minimum, and the vector z̈∗s that minimizes
the Gaussian Gg in Eq. (25) is explicitly given by

z̈∗s = P+b̃ + (I − P+P)M−1/2(Q + C) (28)

The acceleration that minimizes the Gaussian Gg from among all
n-vectors z̈ that minimize ‖Az − b‖2W is therefore

q̈:= z̈∗=M−1/2z̈∗s

=M−1/2[(P+b̃+ (I−P+P)M−1/2(Q+C)]

=M−1Q+M−1/2P+(b̃−PM−1/2Q)+M−1/2(I−P+P)M−1/2C

(29)

which is the same as the equation given in Eq. (15). That
the acceleration n-vector q̈ is unique, is obvious since each

of the members on the right-hand side of Eq. (29) are uniquely
defined.
Using Eq. (28) in Eq. (25), the value of the Gaussian for the q̈

given in Eq. (29) is then given by

Gmin
g (z̈∗) = ‖z̈∗s−M−1/2(Q + C)‖2

= ‖P+b̃ + (I − P+P)M−1/2(Q + C) −M−1/2(Q + C)‖2

= ‖P+[b̃ − PM−1/2(Q + C)]‖2 (30)

Our last task is to show that Gmin
g (z̈∗) which is attained when q̈ :=

z̈∗ as given in Eq. (29) indeed provides the minimum of Gg and, in
fact, provides its global minimum. We show this through reasoning
by contradiction.
Assume that z̈∗s given in Eq. (28) does not yield the global

minimum of Gg. Assume that z̈s has a different component in
the null space of P from that shown on the right-hand side of
Eq. (27) and that the minimum of Gg (see Eq. (25)) occurs
when

z̈s = z̈∗s+(I − P+P)Δ (31)

with (I−P+ P)Δ≠ 0. Using Eq. (25), the Gaussian whose value
is assumed to be a minimum now is then given by

Gg(z̈) = ‖z̈∗s+(I − P+P)Δ −M−1/2(Q + C)‖2 (32)
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As shown in Eq. (30), z̈∗s−M−1/2(Q + C) = P+[b̃ − PM−1/2

(Q + C)], so Eq. (32) becomes

Gg(z̈) = ‖P+[b̃ − PM−1/2(Q + C)] + (I − P+P)Δ‖2

= ‖P+[b̃ − PM−1/2(Q + C)]‖2 + ‖(I − P+P)Δ‖2

The second equality above follows because the n-vectors
P+[b̃ − PM−1/2(Q + C)] and (I−P+P)Δ are orthogonal. Noting
Eq. (30), we find that

Gg(z̈) = Gmin
g (z̈∗) + ‖(I − P+P)Δ‖2 > Gmin

g (z̈∗) (33)

which contradicts our assumption that Gg is a minimum when z̈s is
given by Eq. (31). Hence, Gg attains its minimum at z̈∗s given in
Eq. (28). Moreover we have shown that for any other z̈ that
differs from the z̈∗ that is given in Eq. (29) the Gaussian, Gg,
will increase. We have thus proved that q̈ = z̈∗ in Eq. (15) gives
the unique global minimum of Gg. As noted before, global
minimum principles are rare in classical mechanics.
Note that when P+P= I the set ZW of n-vectors to be used for

minimizing Gg shrinks to just a singleton, thereby making the min-
imization ofGg trivial; then too the n-vector q̈ andGmin

g are correctly
given by Eqs. (29) and (30), respectively (see Remark 6). ▪

We now provide a second proof of Result 1, which is much
shorter, relies on the somewhat abstract algebraic properties of
the Moore–Penrose (MP) inverse of a matrix, and involves
mainly algebraic manipulations.

Proof 2. Let us define the n-vector

s :=M1/2 z̈ −M−1/2(Q + C) (34)

so that the Gaussian can be rewritten as (see Eq. (25))

Gg(s) = ‖s‖2 (35)

and the m-vector p as

p :=W1/2[b − AM−1(Q + C)] (36)

Then noting that P=W1/2B=W1/2AM−1/2

Ps − p =W1/2AM−1/2[M1/2z̈ −M−1/2(Q + C)]

−W1/2[b − AM−1(Q + C)]

=W1/2(Az̈ − b)

so that

‖Ps − p‖2 = (Az̈ − b)TW(Az̈ − b) = ‖Az̈ − b‖2W (37)

From Eq. (35) we see that minimizing the Gaussian is then tan-
tamount to minimizing the norm of the n-vector s, and minimizing
‖Az̈ − b‖2W is tantamount to minimizing ‖Ps − p‖2. Result 1 then
requires us to find the n-vector s that minimizes Gg from among
all vectors s that minimize ‖Ps − p‖. This can be restated as the
problem of finding the minimum-norm solution s∗ that solves the
possibly inconsistent equation Ps≃ p.
It is known that the minimum-norm least squares solution to the

equation Ps≃ p is unique and is given simply by [18]

s∗ = P+p (38)

Using Eqs. (34) and (36), Eq. (38) can then be rewritten as

M1/2z̈∗−M−1/2(Q + C) = P+W1/2[b − AM−1(Q + C)] (39)

from which it follows that

q̈: = z̈∗=M−1Q+M−1/2P+(b̃−PM−1/2Q)+M−1/2(I−P+P)M−1/2C

(40)

which is Eq. (29) (and Eq. (15)). ▪

As stated before in Remark 1, by setting W= Im, so that P=B=
AM−1/2, we obtain the equation of motion given in Eq. (14), thus
validating the First Form of the General Gauss Principle of Least
Constraint as a global minimum principle.

Remark 8. It should be pointed out that the m-by-n matrix A(P)
need not have full row rank and the set of constraints need not be
functionally independent. This is important since in many
complex mechanical systems there can be many nonholonomic con-
straints, which are themselves differential equations. Since the use
of a multiplier can change the appearance of such equations it
would be tedious, at best, to discern which constraints in the set
are the independent constraints. That there is no need to do this,
is an advantage in the development of the equations of motion of
such constrained systems.
We investigate next the manner in which the acceleration q̈

depends on the weighting matrix W in Result 1. Specifically, we
consider the influence of using a positive definite weighting
matrixW> 0, withW≠ Im. To assess the significance of the weight-
ing matrix W, we first prove the following two lemmas, the first of
which does not appear to be widely known in the literature on gen-
eralized inverses. ▪

LEMMA 1. If P=UB where B is any m-by-n matrix and U is a non-
singular m-by-m matrix, then

P+P = B+B

Proof. P=UB⇒PB+B=UBB+B=UB=P. Hence, PB+B=P,
and PB+B=P⇒P+PB+B =P+P. Therefore, P+P= (P+P)T=
(P+PB+B)T= (B+B)T(P+P)T=B+BP+P. Hence, we find that

P+P = B+(BP+P) (41)

Also, B=U−1P⇒BP+P=U−1PP+P=U−1P=B. Hence, BP+P
=B. Using this in Eq. (41), we get P+ P= B+B, which is the desired
result. ▪

LEMMA 2. For an m-by-m matrix W and an m-by-n matrix B

P+ = (W1/2B)+ = B+(W1/2)+ (42)

if and only if

[Im − (W1/2)+W1/2]BBTW1/2 = 0 and [Im − BB+]WB = 0 (43)

Proof. See Ref. [19], and Eqs. (5) and (6) therein. ▪

Remark 7. WhenW> 0, thenW1/2 is nonsingular. Hence, Lemma 1
yields the relation (recall P=W1/2B=W1/2AM−1/2)

P+P = B+B (44)

Furthermore, because W1/2 is nonsingular, (W1/2)+=W−1/2 so
that the first equality in Eq. (43) is always satisfied.
Also, when the m-by-n constraint matrix A has full row rank m,

i.e., the constraints are independent, then B=AM−1/2 has full row
rank, and BB+=BBT(BBT)+=BBT(BBT)−1= I so that the second
equality in Eq. (43) is then also satisfied, and by Lemma 2, we have

P+ = (W1/2B)+ = B+(W1/2)+ = B+W−1/2 (45)

Since b̃ =W1/2b, we get

P+b̃ = B+W−1/2(W1/2b) = B+b (46)

▪
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Hence, when W> 0 and the matrix B(A) has full row rank m,
using Eqs. (44) and (46), Eq. (40) becomes

q̈ =M−1Q +M−1/2P+b̃ − P+PM−1/2Q +M−1/2(I − B+B)M−1/2C

=M−1Q +M−1/2B+b − B+BM−1/2Q +M−1/2(I − B+B)M−1/2C

=M−1Q +M−1/2B+(b − Aa) +M−1/2(I − B+B)M−1/2C (47)

where a=M−1Q. The last expression on the right is just the funda-
mental equation of constrained motion (FECM) given in Eq. (14).
This leads to our next result.

Result 2. For a constraint matrix A that has full row rank and for
every(any) weighting matrix W> 0, at each instant of time t the
acceleration n-vector q̈ of a constrained mechanical system is
obtained by finding
q̈ =min (Gg) :=min ‖z̈ −M−1Q −M−1C‖2M from among all

n-vectors z̈ for which ‖(Az − b)‖2W is a minimum. The acceleration
of the constrained system is explicitly given by

q̈ =M−1Q +M−1/2B+(b − BM−1/2Q) +M−1/2(I − B+B)M−1/2C

where B=AM−1/2. ▪

Somewhat remarkably, we have shown that the correct form of
the equation of motion is obtained by minimizing the Gaussian
no matter what positive definite weighting matrix W≠ Im one uses
in finding the least squares solution of the inconsistent equations
Aq̈ ≃ b, when the matrix A has full row rank, so that the constraints
are independent. This leads us to the second form of the General
Gauss Principle of Least Constraint. Nature appears to discard the
information on the positive definite weighting matrix W; it picks
the same acceleration vector q̈ at each instant of time as though
W were simply Im.

Second Form of the General Gauss Principle of Least Con-
straint. Nature selects the acceleration n-vector q̈ of the con-
strained system at each time instant t by minimizing the Gaussian
Gg among all acceleration n-vectors that satisfy the independent
constraints Aq̈ ≃ b acting on the system in the weighted least
squares sense, irrespective of the positive definite weighting
matrix W used in getting the least squares solutions.

3 Virtual Displacements
Section 2 shows that the same form of the equation of motion is

obtained for a constrained system without requiring that the con-
straint equation (Eq. (4)) be consistent, with Nature appearing to
consider all possible acceleration n-vectors, z̈, that satisfy the equa-
tion Az̈ ≃ b in the least squares sense among the set of vectors that
are eligible for minimizing the Gaussian Gg. This expansion in
Gauss’s Principle that permits inconsistent constraints in the
description of constrained mechanical systems must provide pari
passu an expansion of d’Alembert’s principle too. This is because
the two principles yield the same expression for the acceleration
n-vector of any constrained system. Any change (expansion) in
scope in either one of these principles must bring about a commen-
surate change in the scope of applicability of the other.
We therefore explore in this section the question: how does the

increased scope of the General Gauss’s Principle of Least Con-
straint obtained in the previous section alter our understanding of
d’Alembert’s principle?
The notion of a virtual displacement is at the core of d’Alembert’s

principle, and it is one of the notions that all of Lagrangian mechan-
ics rests on. Though this notion was first used by d’Alembert [9], it
was carefully refined in a general manner by Lagrange [1]. Later on,
it was defined for constraints in Pfaffian form in which the general-
ized velocities appear only linearly. Even today, more than two cen-
turies after Lagrange, many texts still consider only Pfaffian

constraints [5]. The inclusion in analytical dynamics of more
general constraints in which the generalized velocities can appear
nonlinearly, and the corresponding notion of virtual displacements
for such constraints (as given in Eq. (5)) appears to be a recent
development [10]. The expansion of d’Alembert’s principle to
take account of forces of constraint that do do work under virtual
displacements [13,14] led to a pari passu expansion/extension in
Gauss’s Principle of Least Constraint in which the Gaussian was
modified from G to Gg [12]. The new understanding obtained in
this paper of Gauss’s Principle of Least Constraint points to the
need for a further conceptual change in the notion of a virtual dis-
placement, a quintessential element of Lagrangian mechanics.
Currently, we consider a virtual displacement n-vector to be any

nonzero vector which is the difference between any two distinct
n-vectors q̈ (called possible accelerations) that satisfy the consistent
constraint equation A(q, q̇, t)q̈(t) = b(q, q̇, t) [10]. Thus, if ˜̈z1 and ˜̈z2
are any two distinct possible accelerations such that
A(q, q̇, t)˜̈zi(t) = b(q, q̇, t), i = 1, 2, then

ṽ(t) = ˜̈z1 − ˜̈z2 (48)

qualifies as a virtual displacement at time t. A virtual displacement
therefore satisfies the relation Aṽ = 0, that is, it is any n-vector (not
necessarily infinitesimal) that lies in the null space of the matrix A at
time t. We now extend the notion of a virtual displacement on the
basis of the results obtained in this paper as follows.
Consider a mechanical system subjected to the constraint equa-

tion set

A(q, q̇, t)q̈(t) ≃ b(q, q̇, t) (49)

that may or may not be consistent. The constraint matrix A is an
m-by-n matrix of rank r and arises due to the presence of a total
of m holonomic and/or nonholonomic constraints.
Let z̈1 and z̈2 be any two distinct possible acceleration n-vectors

that provide least squares solutions (with the weighting matrix Im)
to A(q, q̇, t)z̈i(t) ≃ b(q, q̇, t), i = 1, 2. Then, the notion of a virtual
displacement, v(t), can be expanded to mean any nonzero
n-vector which is the difference between these two possible least
squares solutions, that is

v(t) = z̈1(t) − z̈2(t) (50)

We note that the least squares solution n-vectors, z̈i, i= 1, 2, solve
the normal equation

ATAz̈i = ATb, i = 1, 2

As shown in Eqs. (19)–(21), (any) two distinct, explicit solutions
of this equation are given by

z̈i = A+b + (I − A+A)ui, i = 1, 2,

where ui, i = 1, 2, are any two distinct arbitrary n-vectors. The
(nonzero) n-vector

v(t) = z̈1(t) − z̈2(t) = (I − A+A)(u1 − u2) := (I − A+A)w(t) (51)

which is the difference between any two such possible (least squares
solution) n-vectors gives a virtual displacement “compatible”
with the inconsistent constraints given in Eq. (49). The vector
w = u1(t)− u2(t)≠ 0 is an arbitrary n-vector.
The notion of a virtual displacement that is in use today is pro-

vided by the n-vectors ṽ described in Eq. (48). Equation (50)
expands the scope of this notion to include constraints that may
be inconsistently prescribed. This new notion of a virtual displace-
ment continues to satisfy the (old) condition that it lies in the null
space of A, since by Eq. (51)

Av = A(I − A+A)w = 0 (52)

The main conceptual change in our understanding of a virtual dis-
placement here is that the constraint equations need not be consis-
tent, and a (nonzero) virtual displacement is not necessarily the
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difference between any two exact, distinct solutions of the equation
Aq̈ = b, which is required to be necessarily consistent, but the differ-
ence between any two distinct least squares solutions of the possibly
inconsistent equation Aq̈ ≃ b.

4 Conclusions
This paper deals with a topic in analytical dynamics which is at

its very foundations and which affects our understanding of both
solid and fluid mechanics. It gives a general form of Gauss’s prin-
ciple of Least Constraint.
The principle Gauss gave in 1829 states that at each instant of

time, Nature picks the acceleration of a constrained system from
all possible accelerations that satisfy the constraints imposed on it
by minimizing the Gaussian, which is the two-norm of the differ-
ence between the acceleration (column vector) of the constrained
system and the acceleration (column vector) of the unconstrained
system weighted by the positive definite mass matrix of the uncon-
strained system. This principle is applicable only to systems in
which the forces of constraint do no work under virtual
displacements.
The investigation reported in this paper began with the explora-

tion of the following question: For a constrained mechanical
system, given: (1) that holonomic and/or nonholonomic constraints
act continuously on it throughout the duration of its motion, and (2)
that these constraints are almost never exactly satisfied as prescribed
in the modeling of the dynamical system throughout its motion,
why is it that the equation of motion given by Gauss’s principle
for the dynamical system provides a good prediction of its dynami-
cal behavior, despite the possibly incorrect description of the con-
straints at each instant of time t throughout the motion of the
system. The unexpected answer to this question is that the equation
of motion provided by Gauss’s Principle remains unaltered when
the constraints are satisfied in the least squares sense. Thus,
Nature does not seem to require that the constraints be satisfied
exactly at each instant of time as prescribed, and allows for their
miss-prescription. In fact, it even allows the constraints to be possi-
bly inconsistent, thereby showing the robustness with which it
orchestrates constrained motion.
This paper thus expands Gauss’s principle and expresses it in two

closely related forms. Both of these forms go beyond the principle
originally proposed by Gauss. They include forces of constraint that
can do positive, zero, or negative work under virtual displacements,
so that energy could be fed to (or extracted from) a mechanical
system through the presence of constraints, as may happen when
the constraint “surfaces” have friction. More importantly, as men-
tioned earlier, these general forms of Gauss’s Principle of Least
Constraint are applicable to systems in which the constraints
imposed on them may not be exactly satisfied at each instant of
time. It is shown that Gauss’s principle extends to constraints that
could even be inconsistent at one or more instants of time as
could happen if these constraints are experimentally obtained and
subject to measurement errors, and/or subject to computational
errors (and/or round-off errors) caused by the use of numerical pro-
cedures in simulating the behavior of constrained physical systems
that may be either engineered or found in nature.
The first form of the General Gauss Principle of Least Constraint

obtained in this paper states that at each instant of time, Nature picks
the acceleration of a constrained system by minimizing the Gauss-
ian of the constrained system from among the set of all possible
accelerations, which satisfy the (possibly inconsistent) constraints
imposed on it in the least squares sense, using the identity matrix
as the weighting matrix when finding these possible accelerations.
The constraints that the modeler may use could be functionally
dependent, as often happens when there are numerous holonomic
and/or nonholonomic constraints that a complex mechanical
system can be subjected to.
The second form of the General Gauss Principle of Least Con-

straint asserts that at each instant of time, Nature picks the

acceleration of a constrained system by minimizing the Gaussian
from among all possible accelerations, which satisfy the (possibly)
inconsistent independent constraints imposed on it in the least
squares sense, with no regard to the choice of the positive definite
weighting matrix used in obtaining the possible accelerations; the
resulting acceleration of the constrained system is independent of
this choice.
The new principle obtained here points to a rethinking of the

notion of a virtual displacement—a concept that is at the heart of
our understanding of the statics and dynamics of all mechanical
systems [1]. Currently, a virtual displacement is defined as the dif-
ference between two distinct possible accelerations. These possible
accelerations have so far been taken to be those that satisfy the con-
straint equations exactly at each instant of time [10]. This notion is
shown here to be broadened to allow the set of possible accelera-
tions to also include those that satisfy the constraint equations in
the least squares sense, with a virtual displacement defined as the
difference between any two such distinct possible accelerations.
Lastly, there appears to be a peculiar mathematical aesthetic

with which Nature appears to contrive the motion of any con-
strained mechanical system: it minimizes a quadratic form, the
Gaussian—by solving a least squares problem—using as eligible
candidates for this minimization only those that minimize another
quadratic form—by solving yet another least squares problem,
thereby obtaining the global minimum of the generalized Gaussian,
which is just a scalar.
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